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The paper proposes a new dynamic model based on the LuGre model and an electrical
equation to describe the hysteresis phenomenon for a magnetorheological (MR) damper.
In addition, a sliding mode observer (SMO) is proposed to estimate unmeasurable states
of the MR damper. The parameters of the MR damper are successfully identified by using
the self-learning particle swarm optimization (SLPSO) algorithm. The contributions of this
paper are: i) a new dynamic model based on the LuGre model and an electrical equation for
an MR damper is successfully formulated to fit for the hysteresis behavior, ii) the exerted
damping force can be practically adjusted by using input voltage for the dynamic model,
iii) the SMO is proposed to estimate the internal states and current, and iv) the unknown
parameters of the MR damper are successfully identified by using the SLPSO algorithm
with a numerical experiment.
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1. Introduction

The magnetorheological (MR) damper is a well known semi-active shock absorber which has been
extensively studied and investigated recently. Characteristics of MR dampers include low power
requirements, simple construction, quick response and adjustable damping force. Currently, they
are widely applied in vehicle suspension systems and civil engineering to absorb shocks. However,
the nonlinear hysteresis phenomenon of MR dampers is an inherent and complicated problem.
Accordingly, how to correctly describe the hysteresis phenomenon with a simple dynamic model
for the MR damper is a significant and interesting research area. Previously, the Bouc-Wen
model has been widely implemented to characterize the hysteresis phenomenon (Ismail et al.,
2009; Ikhouane and Rodellar, 2005, 2007; Metered, 2010; Bhowmik, 2011; Ambhore et al., 2013).
Moreover, the development of the Bouc-Wen model to describe the hysteresis phenomenon in
dynamically excited nonlinear structures has been reviewed (Ismail et al., 2009). Moreover,
standard and modified Bouc-Wen models have been proposed in the literature (Ikhouane and
Rodellar, 2005; Metered, 2010; Bhowmik, 2011; Ambhore et al., 2013). Recently, Ramli et al.
(2019) proposed a Bouc-Wen model to describe the dynamic behavior of smart material-based
actuators, then designed an adaptive controller to implement in a smart actuator. In (Naz et
al., 2021), a piezo-stage actuator that was modelled based on the nonlinear Bouc-Wen hysteresis
model was numerically studied and presented. The performance of the positioning system model
was validated through accuracy measurements and a regression analysis.
In (Balamurugan and Jancirani, 2013), a modified parametric algebraic model was presented

that was able to control a semi-active suspension system, and the effectiveness and robustness of
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the semi-active control approach was demonstrated in simulations. To investigate the dynamics
of a damper filled with an MR fluid, a lumped mass thermo-mechanical model was proposed
and studied in (Zalewski et al., 2014). Several effects (including friction and temperature) were
discussed in this model and the piston displacement coupled with the energy balance equation
for temperature was analyzed. In (Boada et al., 2018), an inverse MR damper model based on
network inversion was proved in experimental tests to estimate the input current and voltage, and
the damping force was exerted by an MR damper. In (Graczykowski and Pawłowski, 2017), the
damper response of an MR fluid was modeled using thermodynamic equations which described
reduced and parametric models in terms of relative phenomena. Recently, a generalized hysteretic
bi-viscous operator was proposed in (Zhao et al., 2018) for approximate description of hysteretic
properties. In the aforementioned studies, different types of mathematical models were proposed
to properly characterize the nonlinear hysteresis phenomenon in the input current. However, it
is impractical to adjust the damping force using the input current for an MR damper. Therefore,
a mathematical model using the input voltage is more practical for adjusting the damping force.

Determination of the unknown parameters in the proposed dynamic model is a significant
task. Here, the parameter identification method is suitable for finding the unknown parameters
of the dynamic model. Recently, some studies about parameter identification for MR dampers
have been conducted. For example, parameter identification in typical loading cases was stud-
ied in (Peng et al., 2018), and the authors established a functional relationship with the input
current. Moreover, these parameters were defined and optimized by a genetic algorithm inte-
grated with the Simulink toolbox in MATLAB. In (Pelliciari et al., 2018), a pinched hysteretic
system was modelled using a modified Bouc-Wen model. There, parameter identification for the
hysteretic system was performed by using a genetic algorithm, and the numerical results were
successful. A normalized Bouc-Wen model was employed in (Zhu et al., 2019) to describe the
hysteresis of an MR damper. Then, a genetic algorithm was utilized to identify the parameters
of the MR damper, and the simulation results indicated that the proposed method was more
accurate. A constrained unscented Kalman filter was proposed in (Niola et al., 2019) to identify
the parameters of the hysteresis model. There, the Bouc-Wen model was adopted to describe the
hysteretic behavior for a seismic isolator. The results indicated that the proposed Kalman filter
provided an improved parameter identification ability. A modified Bouc-Wen hysteresis model
was adopted in (Bartkowski et al., 2019) to describe nonlinear responses of tested specimens,
and a genetic algorithm was applied to identify the model parameters. In (Nguyen et al., 2022),
a novel adaptive parameter identification method was proposed for a model consisting of an esti-
mated model, a hysteresis observer, and adaptive algorithms. The mentioned models, including
the Bouc-Wen one, LuGre and Dahl friction model for MR dampers, still have many unknown
parameters to find to fit the real dampers. System parameter identification is a practical method
that uses intelligence algorithms, including the particle swarm optimization algorithm, dynamic
neural networks and genetic algorithms. If a fitness function (FF) is defined with an error func-
tion between the real and estimated damping force, these algorithms can randomly search for
proper parameters to optimize (maximize or minimize) the FF, and these proper parameters are
the final solutions.

In this paper, a modified LuGre friction model (Jiménez and Álvarez-Icaza, 2005) is imple-
mented to characterize the nonlinear hysteresis phenomenon for an MR damper. The control
input voltage can change the current to adjust the damping force. However, the control input
voltage is more practical than the control input current for MR dampers during real operation.
Therefore, an electrical equation including resistance, inductance and induced electromotive
force is considered and integrated into the dynamic model. In other words, a new dynamic
model with an electrical equation for MR dampers is formulated and presented in this paper.
In addition, a sliding mode observer (SMO) is proposed to estimate unmeasurable states of the
MR damper. Then, the self-learning particle swarm optimization (SLPSO) (Li et al., 2012) is
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proposed to identify the unknown parameters. An FF is defined as the absolute error between
the real and estimated damping force. Three types of input voltage are implemented to verify
the efficiency of the parameter identification, where it is revealed that a varying input voltage
can excite more varying output responses, which are used to correctly identify the unknown
parameters. From the simulation results, the new dynamic model was successfully formulated.
The proposed identification method is practicable for dynamic modelling of an MR damper to
identify the unknown parameters.

Finally, the remainder of this paper is organized as follows: Section 1 presents the intro-
duction, Section 2 contains dynamic modeling of an MR damper, Section 3 presents parameter
identification, whereas numerical experiments and conclusions are described in Sections 4 and 5,
respectively.

2. Dynamic modeling

An MR damper is a shock absorber filled with a magnetorheological fluid, and the exerted damp-
ing force can be adjusted by the magnetic field via the input current. The damping characteristic
of an MR damper can be continuously adjusted by changing the power of the electromagnet,
whereby the fluid viscosity increases within the damper as the electromagnetic intensity in-
creases. In traditional dampers, the relationship between the damping force fd and velocity v
is linear, which can be represented as fd = µv, where µ is the damping coefficient. However,
the relation of the damping force with input velocity and displacement for the MR damper is a
nonlinear hysteresis phenomenon. Therefore, formulating an appropriate dynamic model of the
MR damper that completely describes the hysteresis behavior is a significant challenge.

2.1. Mathematical model based on the LuGre model

In this study, one can find a dynamic model to describe the hysteresis phenomenon of the
MR damper. The hysteresis phenomenon can also be found in various fields, including physics,
chemistry, engineering, biology and economics. Moreover, previous models, such as the Preisach
(Roussel et al., 2022a,b) and Duhem models (Ahmed et al., 2021; Xu et al., 2022) have been pro-
posed to describe nonlinear hysteresis systems. Many dynamic models have also been developed
to describe such hysteresis behavior, and it is necessary to select and implement high-accuracy
models to capture nonlinear hysteretic responses. For example, traditional and modified Bouc-
-Wen models (Ramli et al., 2019; Naz et al., 2021; Peng et al., 2018; Pelliciari et al., 2019) have
been proposed to describe hysteretic responses of an MR damper. The Bouc-Wen model com-
prises three parts (spring, damper and Bouc-Wen block) and includes an evolutionary variable,
internal displacement and external excitation displacement. However, the evolutionary variable
and internal displacement are unmeasurable, which is a disadvantage in practical operations.
A diagram of an MR damper is presented in Fig. 1, where I is the input current and terms
x and v are the external excitation displacement and velocity, respectively. In this paper, the
LuGre mathematical model (Jiménez and Álvarez-Icaza, 2005) has been adopted to describe the
hysteretic behavior, which is written as follows

ż = v − α|v|z f = β(I)v + δx+ εż + γ(I)z + f0 (2.1)

where z is the internal state variable, f is the damping force exerted by the MR damper, α, δ
and ε are the positive constants, and f0 is the known damping force. The functions β(I) and
γ(I) with the input current I are written as follows

β(I) = −p1I
2 + p2I + p3 γ(I) = q1I + q2 (2.2)
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where p1,2,3 and q1,2 are the positive constants. The mathematical model using the LuGre model
of the MR damper is proposed in Eqs. (2.1). It is evident that the internal state of z is the only
unknown variable in the mathematical model, which can be estimated by a state observer.

Fig. 1. A diagram of an MR damper

2.2. Electrical equation

Although the input current I is produced by the input voltage, it is easier to change the ex-
erted damping force by adjusting the input voltage in practical applications of the MR damper.
Then, an electrical equation that includes the control input voltage, resistance and inductance
is necessary when formulating the dynamic model. The resistor-inductor circuit is the general
electrical circuit that is suitable for the MR damper model. In particular, the induced electro-
motive force (EMF) that occurs between the coil and MR fluid is considered in the dynamic
model. According to Faraday’s law, the EMF J is formally defined as

J = N
dΦB
dt

(2.3)

where J is the EMF, N is the number of turns on the coil, and ΦB is the magnetic flux.
It is known that MR fluids are filled with micrometer-sized magnetizable particles. When the
magnetic field induced by the current in the coil and the magnetizable particles pass through
the coil, the magnetic flux is directly proportional to the velocity of the magnetizable particles.
According to this description, the following expression can be obtained

J = λv (2.4)

where λ is the EMF constant. Therefore, the completed electrical equation that includes the
input voltage, resistance, inductance and EMF is as follows

U = IR+ L
dI

dt
+ λv (2.5)

where U is the input voltage, R is the resistance, and L is the inductance. The electrical parame-
ters R, L and λ are assumed constant without any temperature effect. The mathematical model
with the LuGre model for the MR damper is proposed in Eqs. (2.1). In addition, the complete
electrical equation is formulated in Eq. (2.5). To integrate the exerted damping force with the
electrical equation, a diagram of an operational MR damper is presented in Fig. 2. When the
external excitation displacement x and velocity v are applied to the MR damper, the exerted
damping force f is produced, which can be adjusted with the input current I. Then, the damping
force can be measured by using a load cell transferred to a personal computer (PC). Here, the
PC receives signals including the damping force, external excitation displacement and velocity.
Accordingly, the diagram of the MR damper is successfully designed, which can be extensively
implemented in the system modeling, parameter identification and vibration control.
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Fig. 2. A diagram of an operational MR damper

Finally, the proposed dynamic model with a state-space matrix form using Eqs. (2.1)1 and
(2.5) can be formulated as

Ẋ = AX+BW Y = CX (2.6)

where

X =




x
z
I



 A =




0 0 0
0 −α|v| 0

0 0 −R
L



 B =




1 0 0
0 1 0

0 −λ
L

1
L





W = [v, v, U ]T C = [1, 0, 0]

In particular, X is the system state vector, Y is the system output, A and B are the system
matrices,W is the input vector, and terms v and U are the inputs.

3. Parameter identification

Dynamic modeling of a system is the first step toward analyzing an engineering problem. In
Section 2, the dynamic model of an MR damper is formulated by Eqs. (2.6). The exerted
damping force for an MR damper is also included in Eq. (2.1)2. Moreover, there are 11 unknown
parameters (α, δ, ε, p1,2,3, q1,2, R, L and λ) in the dynamic model using Eqs. (2.1)2 and (2.6).
In this study, parameter identification is proposed to identify these unknown parametersr. First,
the SLPSO algorithm (Li et al., 2012) is employed to find the unknown parameters. Then, the
FF can be defined as an object function to be optimized by the SLPSO algorithm. When the
SLPSO algorithm has optimized the FF with a set of parameters, the final parameters are the
solutions for the unknown parameters.

3.1. Self-learning particle swarm optimization

Although the conventional PSO algorithm can find the local optimal solution to an optimiza-
tion problem, the method is awkward when dealing with a complex and nonlinear optimization
problem. Therefore, the SLPSO algorithm has been developed to deal with nonlinear systems
and global optimization problems. The SLPSO has advantages including global optimization,
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rapid convergence and searching ability, which are suitable for performing system parameter
identification for the MR damper. First, the basic updated equation for the standard PSO for
each particle j is described as follows

x′j
d
= xdj + v

′

j
d

(3.1)

where x′j
d and xdj represent the current and previous positions in the d-th dimension for the

particle j, respectively, while v′j
d is the current velocity. For the standard PSO algorithm, the

updated equation of the particle velocity is as follows

v′j
d
= wvdj + η1r1(x

d
pbestj

− xdj ) + η2r2(x
d
gbest − x

d
j ) (3.2)

where w ∈ (0, 1) is the inertia weight, vdj is the previous velocity for the particle j, η1 and

η2 are positive acceleration constants, r1 and r2 are random numbers from 0 to 1, x
d
pbestj

is

the best position found for the particle j so far, and xdgbest is the best position found by the

whole set of particles so far. When the current velocity v′j
d is updated, the new position x′j

d is
updated to minimize the objective function for each iteration. However, the SLPSO has four
velocity-updated strategies (exploitation, jumping out, exploration and convergence) to enable
each particle to independently deal with different situations. For each particle j, the learning
equations corresponding to the four operators are respectively given as follows:

1) Operator a: learning from its pbest position

exploitation: v′j
d
= wvdj + η3r

d
j (pbest

d
j − x

d
j ) (3.3)

2) Operator b: learning from a random position nearby

jumping out: x′j
d
= xdj + vavg

dN(0, 1) (3.4)

3) Operator c: learning from the pbest of a random particle

exploration: v′j
d
= wvdj + η3r

d
j (pbest

d
rand − x

d
j ) (3.5)

4) Operator d: learning from the abest position

convergence: v′j
d
= wvdj + η3r

d
j (abest

d − xdj ) (3.6)

where rdj is the random number for each particle j, η3 is the acceleration constant, and pbest
d
rand

is the pbest of a random particle (which is better than pbest j). The jumping step v
d
avg is the

average speed of all particles in the d-th dimension, which is calculated using vdavg =
∑N
j=1 |v

d
j |/N ,

and N is the population size, where N(0, 1) is a random number generated from the normal
distribution with a mean of 0 and a variance of 1. The abest position is an archive of the best
position found so far. Finally, the position of each particle is updated to minimize the objective
function.

In the SLPSO algorithm, each particle has its own velocity-updating strategy to address
different situations for a nonlinear system. The cooperation of the four strategies is implemented
by an adaptive learning framework at an individual level, which enables each particle to choose
an optimal strategy according to its own local fitness landscape. The performing procedure for
the SLPSO algorithm can be found in (Li et al., 2012).
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3.2. Sliding mode observer

For the dynamic model with the LuGre model in Eq. (2.1)1, the variable z is an internal state
and is unmeasurable. In addition, the current I is unknown. To solve the problem of estimating
the states of z and I, a state observer can be implemented. The conditions are that the external
excitation displacement x, velocity v and the input voltage U are known. Moreover, the system
matrices A and B and the input vectorW in Eq. (2.6)1 are also known. The unknown states of
z and I must be rapidly estimated to converge toward the real states. Therefore, a sliding mode
observer (SMO) in accordance with Eq. (2.6)1 is written as follows

˙̂
X = AX̂+BW +∆ (3.7)

where X̂ = [x̂, ẑ, Î]T,∆ = Kε, K = [k1, k2, k3]
T, ε = |e| sgn (e), and e = x̂−x, x̂, ẑ and Î are the

estimated displacement, internal state and current, respectively. Terms k1, k2 and k3 are known
positive constants. The corresponding error dynamic equation between Eqs. (2.6)1 and (3.7) is

Ė = AE+∆ (3.8)

where E = X̂−X = [x̂− x, ẑ − z, Î − I]T.
If Eq. (3.8) is an asymptotically stable system, then E → 0 with t → ∞ and A is a stable

matrix. Here, the term ∆ can be viewed as a control input for the stable system, which should
be satisfied as follows

‖∆‖2 = ‖Kε‖2 ¬ ‖K‖2‖ε‖2 = ‖K‖2|e| ¬ γ‖E‖2 (3.9)

where ‖ · ‖2 is the Euclidean norm and γ is a positive constant. From the mentioned inequality
equation, it is revealed that

|e| ¬ ‖E‖ 0 <
√
k21 + k

2
2 + k

2
3 ¬ γ (3.10)

To prove that the corresponding error dynamic equation is asymptotically stable, a Lyapunov
candidate function L can be proposed as follows

L = ETPE (3.11)

where P ∈ R
3×3 is the positive definite and diagonal matrix. The time derivative of L is

L̇ = ĖTPE +ETPĖ = ET(ATP+PA)E + 2ETP∆ (3.12)

If the homogeneous system Ė = AE is asymptotically stable, there are positive definite matrices
P and Q such that

ATP+PA = −2Q (3.13)

where Q ∈ R
3×3 is the positive definite matrix. Then, Eq. (3.12) can be obtained as

L̇ = −2(ETQE−ETP∆) (3.14)

According to the Rayleigh principle (Andersen, 2000)

λmax(Q)E
TE  ETQE  λmin(Q)E

TE = λmin(Q)‖E‖
2
2 (3.15)

where λmax are the maximum eigen values of Q and λmin are the minimum eigen values of Q.
Here, inequality equation Eq. (3.9) is used, from which the inequality expression is as follows

ETP∆ ¬ ‖E‖2‖P‖2‖∆‖2 = λmax(P)‖∆‖2‖E‖2 ¬ γλmax(P)‖E‖
2
2 (3.16)
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where λmax are the maximum eigen values of P. If the condition satisfies E
TQE  ETP∆, then

we can find an inequality equation by using Eqs. (3.10)2, (3.15) and (3.16), as follows

0 <
√
k21 + k

2
2 + k

2
3 ¬ γ ¬

λmin
λmax

(3.17)

Constants k1, k2 and k3 can be selected according to the above inequality equations. When the
inequality equation ETQE  ETP∆ exists, L̇ ¬ 0 in Eq. (3.14) is obtained as

L̇ = −2(ETQE−ETP∆) ¬ 0 (3.18)

Then, the error dynamic equation Eq. (3.8) is an asymptotically stable system, and E→ 0 with
t → ∞. Hence, the proposed SMO can correctly and rapidly estimate the unknown states of z
and I to converge toward the real states.

3.3. Parameter identification

In practical applications of MR dampers, the input voltage U , excitation displacement x,
excitation velocity v and the output damping force f are known. However, the internal states
of z and the current I are unavailable, and the parameters α, δ, ε, p1, p2, p3, q1, q2, R, L and λ
in the dynamic model of the MR damper are also unknown. In the process of identifying these
parameters, we can find the identification parameters α̂, δ̂, ε̂, p̂1, p̂2, p̂3, q̂1, q̂2, R̂, L̂ and λ̂.
When α̂, R̂, L̂ and λ̂ are found, the estimated states of ẑ, ˙̂z and Î can be obtained using the
SMO. Then, the identified damping force f̂ can be obtained as follows

f̂ = β̂(Î)v + δ̂x+ ε̂ ˙̂z + γ̂(Î)ẑ + f0 (3.19)

where β̂(Î) = −p̂1Î
2 + p̂2Î + p̂3 and γ̂(I) = q̂1Î + q̂2.

If the estimated damping force f̂ is equal to the real damping force f , we can conclude that
the dynamic model is successfully formulated with the identified parameters. Therefore, the FF
is proposed as follows

FF =
n∑

i=1

|f(ti)− f̂(ti)| (3.20)

Finally, the process of parameter identification is combined with the SMO. The identified damp-
ing force f̂ , FF and SLSO algorithms are proposed, and the diagram for parameter identification
is displayed in Fig. 3. The real damping force f(ti) is produced by the external excitation input
displacement, velocity and voltage. Then, the SLPSO randomly selects a set of proper param-
eters α̂, δ̂, ε̂, p̂1, p̂2, p̂3, q̂1, q̂2, R̂, L̂ and λ̂ to minimize the FF at each iteration. When the
FF converges toward the minimum value, the final identified parameters are the identification
results presented by the SLPSO algorithm.

4. Numerical experiments

In the numerical experiments, there are two parts to execute. First, the system state of x of the
MR damper is assumed to be available and the SMO is proposed to estimate the unavailable
states of z and I. Then, the parameters of the mathematical model are unknown, and the SMO
and SLPSO are implemented to identify the unknown parameters. The numerical parameters
for numerical experiments are illustrated in Table 1. The dynamic model of the MR damper
is solved by the Runge-Kutta method with the ODE 45 function using MATLAB. First, to
verify the efficiency of the proposed dynamic model, the external excitation velocity is given as
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Table 1. The given numerical parameters for numerical experiments

α = 3mm−1, R = 5, L = 0.1H, λ = 5 · 10−5 Vs/mm
ε = 0.5Ns/mm, δ = 1N/mm, q1 = 800N/A, q2 = 15N
p1 = 1Ns/mmA

2, p2 = 10Ns/mmA, p3 = 0.5Ns/mm

v = 16π cos(4π/5)tmm/s, and the input voltages are U = 1V, U = 10V and U = 50V. The
phase plane of the damping force versys velocity with different input voltages is shown in Fig. 4,
where it is evident that the proposed dynamic model can appropriately describe the hysteresis
phenomena for a wide range of the external input velocities, voltages and current.

Fig. 3. Process of parameter identification using the SLPSO algorithm

Fig. 4. Force-velocity plane for the variable input voltages

4.1. Sliding mode observer

To prove the estimation performance of the proposed SMO, the estimated results are demon-
strated by using a numerical experiment in this Section. First, when the system matricesA andB
are known, the input vectorW is given as v = 12 cos(πt)mm/s and U = 10 sin(πt/2) V. There-
fore, the real states of z and I can be produced by using the above parameters and input vector
in dynamic Eq. (2.6)1. Nevertheless, for implementation of the SMO, the displacement x is avail-
able. The initial conditions of the estimation states are given as ẑ(0) = 1mm and Î(0) = 2A.
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The constants k1, k2 and k3 for the SMO are selected according to inequality equations (3.17)
to perform the best convergence performance between the real and estimated states. Figure 5
displays the responses between the real and estimated states by using the proposed SMO. A
comparison between z and ẑ is displayed in Fig. 5a. Although the initial conditions of z(0) and
ẑ(0) are different, the estimation state of ẑ rapidly converges toward the real state of z in the
initial period. Similarly, comparisons of I and Î are displayed in Fig. 5b. Although the initial
conditions of I(0) and Î(0) are different, the estimation state of Î rapidly converges toward the
real state I in the initial period. In summary, the unknown states of z and I can be rapidly and
correctly estimated by the SMO proposed in this paper.

Fig. 5. Responses of the estimated states by using the SMO

4.2. Identification results

The external excitation displacement and velocity are respectively given as x =
12 sin(2π/2.5)tmm and v = (24π/2.5) cos(2π/2.5)tmm/s, the operational duration of exter-
nal excitation is 10 s, and the sampling time is ∆t = 5 · 10−3 s. In the numerical experiments,
the real exerted damping force f is obtained by using the given parameters, the external excita-
tion displacement and external excitation velocity. However, the adjusting pf the damping force
is dependent on the varying input current produced by the input voltage. Therefore, the input
voltage plays a major role in producing the damping force. In the process of parameter identifica-
tion for the MR damper, there are three kinds of input voltages: U1 = 10, U2 = |10 sin(π/2.5)t|
and U3 = t. Accordingly, there are three types of damping forces produced by using U1, U2
and U3. The processes of parameter identification using the SLPSO in Fig. 3 are implemented
and performed. Table 2 lists the identification results by using U1, U2 and U3. The feasible
domains for each parameter are given, and the SLPSO algorithm can randomly search for the
proper parameters in the feasible domains to minimize the FF. From the identification results,
it is evident that the average of absolute error percentage by using U1 is maximum, and the
average absolute error percentage by using U3 is minimum. A comparison of the responses of
the FF by using U1, U2 and U3 is shown in Fig. 6. Here, it is clear that the responses of the
FF by using U3 is minimum, and the responses of the FF by using U1 is maximum. From these
results, it can be determined that the identified parameters by using U3 are equivalent to the
real parameters. In the numerical experiments, the identified responses of displacement, velocity
and damping force are respectively denoted as x̂1, v̂1 and f̂1 by using the identified parameters
with the input voltage U1 in Table 2. The identified responses of displacement, velocity and
damping force are respectively denoted as x̂2, v̂2 and f̂2 by using the identified parameters by
the input voltage U2 in Table 2. Similarly, the identified responses of displacement, velocity and
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Fig. 6. Responses comparison of FF by using U1, U2 and U3

Table 2. Identification results by using input voltages U1, U2 and U3

Parameters
Given Feasible Identified values/absolute error percentages
values domain U1 U2 U3

α 3 1.5-4.5 2.439/18.69% 2.360/21.31% 2.318/22.71%

R 5 2.5-7.5 7.500/50% 7.500/50% 6.299/25.98%

L 0.1 0.05-0.15 0.141/41% 0.150/50% 0.150/50%

λ(10−5) 5 2.5-7.5 7.500/50% 3.411/31.78% 7.185/43.70%

ε 0.5 0.25-0.75 0.716/43.2% 0.750/50% 0.750/50%

δ 1 0.5-1.5 1.500/50% 1.500/50% 1.500/50%

q1 800 400-1200 1036.165/29.52% 1054.162/31.77% 869.212/8.65%

q2 15 7.5-22.5 22.500/50% 18.716/24.77% 9.219/38.54%

p1 1 0.5-1.5 1.500/50% 1.500/50% 1.215/21.50%

p2 10 5-15 12.706/27.06% 11.853/18.53% 10.184/1.84%

p3 0.5 0.25-0.75 0.750/50% 0.494/0.12% 0.750/50%

Average of absolute error 41.77%
34.39%

32.19%
percentages [%] (Max) (Min)

damping force are respectively denoted as x̂3, v̂3 and f̂3 by using the identified parameters by
the input voltage U3 in Table 2. In Fig. 7, the responses of real damping force f are produced
with the given parameters (α,R,L, . . . , p2, p3) in Table 2, whereas the responses of estimated
damping forces f̂1,2,3 are produced with the identified parameters (α̂, R̂, L̂, . . . , p̂2, p̂3) by using

the input voltages U1,2,3, respectively. Comparing the responses of damping forces f and f̂1,2,3
versus displacement in Figs. 7a, 7c and 7e, it is evident that the errors between f and f̂1 are
maximum (Fig. 7a), and the errors between f and f̂3 are minimum (Fig. 7e). Figure 7b displays a
comparison of the response between the real damping forces f and f̂1 versus velocity. Figure 7d
presents a comparison between the damping forces f and f̂2 versus velocity, and Fig. 7f presents
a comparison between the damping forces f and f̂3 versus velocity. Comparing the damping
forces between f and f̂1,2,3 in Figs. 7b, 7d and 7f, it is clear that the errors between f and f̂1
are maximum (Fig. 7b), and the errors between f and f̂3 are minimum (Fig. 7f). From these
comparisons, it is evident that the responses of f̂3 with the identified parameters are similar to
the real damping force f .

To confirm the values of the identified parameters in Table 2, the same external excita-
tion displacement and velocity are used, and an other input voltage of U(t) = 10 sin(πt/10),
0 ¬ t ¬ 10 s is applied to the MR damper. First, a comparison between the real internal state
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Fig. 7. Comparison of the response between f and f̂1,2,3

Fig. 8. Comparison of the responses between z and ẑ1,2,3 by the SMO



A study of dynamic hysteresis model for a magnetorheological damper 271

of z and the estimated internal state of ẑ by the SMO is shown in Fig. 8. The real internal
state of z is obtained from Eq. (2.1)1 with the given value of α = 3. The estimated internal
states ẑ1,3,3 are obtained by using the SMO with the identified values of α̂ in Table 2. It is
revealed that the errors of z and ẑ are between 0.1mm. It is also evident that the estimated
state of ẑ is successfully estimated by using the SMO. Figure 9 displays a comparison between
the real damping f and estimated damping forces f̂1,2,3. The error responses of f − f̂1,2,3 versus
displacement and velocity are respectively shown in Figs. 9a and 9b. Here, it can be observed
that the error responses of f − f̂3 are less than the other two errors. The error responses of
f− f̂1,2,3 versus time are respectively shown in Figs. 9c and 9d, where it is evident that the error

responses of f − f̂1,2,3 are also minimum.

Fig. 9. Comparison of the responses between f and f̂1,2,3 by using the input voltage
U(t) = 10 sin(πt/10)V

4.3. Discussion

In the numerical experiments, this paper proposes a methodology for parameter identifica-
tion using the SLPSO for an MR damper with a new dynamic model. The real internal state,
current and damping force are obtained from the dynamic model with given parameters and
inputs. In practical conditions, the external excitation inputs (displacement and velocity) and
input voltage are known, and the output is the exerted damping force. The parameters of the
dynamic model are unknown. In this paper, three types of input voltages are implemented in
the dynamic modeling. From the numerical experiments, three sets of parameters are revealed
by three input voltages shown in Table 2. From a comparison of the response between the real
damping force f and estimated damping forces f̂1,2,3, it is revealed that the estimated damping

force f̂3 produced by the identified parameters is more similar to the real damping force f than
the other two cases. Therefore, we can conclude that the responses found by using U1 are dull,
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and the responses by using U2 are periodic, the two input voltages cannot excite the unknown
parameters in the dynamic modelling. In contrast, the responses obtained by using U3 are dy-
namic and varied, they can excite the unknown parameters by the SLPSO. Furthermore, the
error responses between f and f̂3 are smaller than the other two error responses shown in Fig. 9.
Therefore, the parameters identified by using U3 are equivalent to the real parameters of the MR
damper when the identification conditions (e.g., U , x, v and feasible domain) are known and
bound. Finally, the proposed dynamic model for the MR damper is practical for use with the
input voltage. The method of parameter identification for the MR damper by using the SMO
and SLPSO is feasible and successfully applied in this study. The advantage of the proposed
dynamic model with the input voltage is the ability of adjusting the MR damper force.

5. Conclusions

In the dynamic response of an MR damper, the relationship between the exerted damping force
and the external excitation input velocity is termed the hysteresis phenomenon. It is interesting
to formulate a dynamic model for the MR damper. Therefore, in this paper, we proposed a
dynamic model based on the LuGre model and an electrical equation for the MR damper. Then,
the damping force can be practically adjusted by using the input voltage. However, there are
some unknown parameters in the dynamic model of the MR damper. Accordingly, parameter
identification by using the SLPSO algorithm is proposed to identify these unknown parameters,
and the SMO is used to estimate the unmeasurable states. From numerical experiments, it is
clear that the unmeasurable states are correctly estimated by the proposed SMO. Then, the
unknown parameters of the dynamic model have been successfully identified by the SLPSO
algorithm. The contributions of this paper are as follows:

• a new dynamic model based on the LuGre model and an electrical equation for MR
dampers is formulated to fit for the hysteresis behavior,

• for the proposed dynamic model, the damping force can be practically adjusted by using
the input voltage,

• the SMO is proposed to estimate the unmeasurable states,

• the unknown parameters of the MR damper are successfully identified by using SLPSO
algorithm.

In the future work, the proposed dynamic model of MR dampers can be integrated into suspen-
sion systems to perform semi-active vibration control.
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